Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance.
نویسندگان
چکیده
The goal of this experiment was to evaluate the role of cellular interactions postulated by the Hebbian, or covariance, hypothesis in the induction of receptive-field (RF) plasticity in the adult auditory cortex (ACx). This was accomplished by determining whether a "covariance treatment" (see below) was sufficient to induce RF plasticity without behavioral experiences that normally induce such plasticity. During the covariance treatment (conducted in urethane-anesthetized adult guinea pigs), one tone was paired with excitatory juxtacellular current, applied to a single postsynaptic cell in the primary ACx. Excitatory current increased postsynaptic discharge, thereby increasing covariance between activity of the postsynaptic cell and its afferents that were activated by the tone. In alternation, within the same cell a second, different tone was paired with inhibitory juxtacellular current, decreasing covariance between the postsynaptic cell and afferents activated by the second tone. After treatment, responses to tones associated with increased covariance strengthened significantly relative to tones associated with decreased covariance, as predicted by the Hebbian hypothesis. This occurred in 7 of 22 (32%) cells undergoing 120 pairing trials, but in only 4 of 38 (11%) cells undergoing 60 trials. Fewer than 5% of cells showed significant effects opposite those predicted by the hypothesis. Significant plasticity lasted > or = 15 min. Probability of plasticity was significantly higher when the cortical electroencephalogram was nonsynchronized during treatment (5/9 cells) than when synchronized (2/13 cells). These findings support the role of presynaptic-postsynaptic covariance processes in the induction of adult neocortical RF plasticity and suggest that factors associated with cortical state "gate" such plasticity.
منابع مشابه
A Re-Examination of Hebbian-Covariance Rules and Spike Timing-Dependent Plasticity in Cat Visual Cortex in vivo
Spike timing-dependent plasticity (STDP) is considered as an ubiquitous rule for associative plasticity in cortical networks in vitro. However, limited supporting evidence for its functional role has been provided in vivo. In particular, there are very few studies demonstrating the co-occurrence of synaptic efficiency changes and alteration of sensory responses in adult cortex during Hebbian or...
متن کاملLearning-Induced Receptive Field Plasticity in the Primary Auditory Cortex
Primary sensory cortex in the adult is modified by learning. The primary auditory cortex is retuned when a tone is paired with a behaviorally relevant reinforcer. Frequency receptive fields are shifted toward or to the frequency of the signal stimulus, yielding enhanced processing and representation of important frequencies. Receptive field plasticity constitutes ‘‘physiological memory’’ becaus...
متن کاملMuscarinic dependence of nucleus basalis induced conditioned receptive field plasticity.
Receptive field (RF) plasticity in primary auditory cortex of adult animals, specifically selective increased response to a tonal conditioned stimulus (CS) relative to other frequencies, can be induced both by behavioral conditioning and by pairing a tone with stimulation of the nucleus basalis (NB). This study determined whether cortical muscarinic receptors are necessary for NB-induced RF pla...
متن کاملActivity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning.
Most algorithms currently used to model synaptic plasticity in self-organizing cortical networks suppose that the change in synaptic efficacy is governed by the same structuring factor, i.e., the temporal correlation of activity between pre- and postsynaptic neurons. Functional predictions generated by such algorithms have been tested electrophysiologically in the visual cortex of anesthetized ...
متن کاملNonlinear Hebbian Learning as a Unifying Principle in Receptive Field Formation
The development of sensory receptive fields has been modeled in the past by a variety of models including normative models such as sparse coding or independent component analysis and bottom-up models such as spike-timing dependent plasticity or the Bienenstock-Cooper-Munro model of synaptic plasticity. Here we show that the above variety of approaches can all be unified into a single common pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 16 2 شماره
صفحات -
تاریخ انتشار 1996